
D e p t o f C S E , M B I T S Page 1

PAGE REPLACEMENT ALGORITHMS

 While swapping in a page, if no frame is free, we find one

that is not currently being used and free it.

 We can free a frame by writing its contents to swap space

and changing the page table (and all other tables) to

indicate that the page is no longer in memory.

 We can now use the freed frame to hold the page for which

the process faulted.

 If we have multiple processes in memory, we must decide

how many frames to allocate to each process; and when

page replacement is required, we must select the frames

that are to be replaced.

 Designing appropriate algorithms to solve these problems

is an important task, because disk I/Ois so expensive. Even

slight improvements in demand-paging methods yield large

gains in system performance.

 There are many different page-replacement algorithms.

Every OS probably has its own replacement scheme.

 How do we select a particular replacement algorithm? In

general, we want the one with the lowest page-fault rate.

 We evaluate an algorithm by running it on a particular

string of memory references and computing the number of

page faults.

 The string of memory references is called a reference

string. We can generate reference strings artificially (by

using a random-number generator, for example), or we can

D e p t o f C S E , M B I T S Page 2

trace a given system and record the address of each

memory reference

 The important page replacement algorithms are

1. FIFO (First In First Out)

2. Optimal Page Replacement (OPT)

3. LRU (Least Recently Used)

4. LFU (Least Frequently Used)

5. MFU (Most Frequently Used)

FIFO (First In First Out) Algorithm

 The simplest page-replacement algorithm

 FIFO replacement algorithm associates with each page the

time when that page was brought into memory.

 When a page must be replaced, the oldest page is chosen.

 It is not strictly necessary to record the time when a page is

brought in. We can create a FIFO queue to hold all pages

in memory. We replace the page at the head of the queue.

When a page is brought into memory, we insert it at the tail

of the queue

Problem:

Consider the following reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a memory with three frames.

D e p t o f C S E , M B I T S Page 3

 There are fifteen faults altogether.

 The FIFO page-replacement algorithm is easy to

understand and program.

 However, its performance is not always good.

 Even if we select for replacement a page that is in active

use, everything still works correctly. After we replace an

active page with a new one, a fault occurs almost

immediately to retrieve the active page.

 Some other page must be replaced to bring the active page

back into memory. Thus, a bad replacement choice

increases the page-fault rate and slows process execution.

 It does not, however, cause incorrect execution

 Another drawback of FIFO algorithm is Belady’s anomaly

 Eg: Consider the following reference string:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Run FIFO algorithm with number of frames varies from 1

to 7

 Let the no of frames be 1: No of page faults = 12

 Let the no of frames be 2: No of page faults = 12

D e p t o f C S E , M B I T S Page 4

 Let the no of frames be 3:

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5

5 5

 2 2 2 1 1 1 3 3

 3 3 3 2 2 2 4

No of page faults = 9

 Let the number of frames be 4:

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1

5 5 5 5 4 4

 2 2 2 2 1 1 1 1 5

 3 3

3 3 2 2 2 2

 4 4 4 4 3 3 3

No of faults = 10

(No of frames 5, 6 & 7 are left to you as home work)

D e p t o f C S E , M B I T S Page 5

 Figure shows the curve of page faults for this reference

string versus the number of available frames.

 Notice that the number of faults for four frames (ten) is

greater than the number of faults for three frames (nine)!

 This most unexpected result is known as Belady’s

anomaly: for some page-replacement algorithms, the page-

fault rate may increase as the number of allocated frames

increases.

 We would expect that giving more memory to a process

would improve its performance. But this assumption was

not always true.

D e p t o f C S E , M B I T S Page 6

Optimal Page Replacement (OPT)

 Algorithm that has the lowest page-fault rate of all

algorithms and will never suffer from Belady’s anomaly.

 It replaces the page that will not be used for the longest

period of time.

 Use of this page-replacement algorithm guarantees the

lowest possible page fault rate for a fixed number of

frames. So this algorithm is also called MIN

 It requires future knowledge of the reference string.

Problem:

Consider the following reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a memory with three frames.

Solution:

 With only nine page faults, optimal replacement is much

better than FIFO algorithm, which results in fifteen faults.

 If we ignore the first three, which all algorithms must

suffer, then optimal replacement is twice as good as FIFO

replacement.

D e p t o f C S E , M B I T S Page 7

 In fact, no replacement algorithm can process this

reference string in three frames with fewer than nine faults.

 Unfortunately, the optimal page-replacement algorithm is

difficult to implement, because it requires future

knowledge of the reference string.

 We encountered a similar situation with the SJF CPU-

scheduling algorithm also

 So, the optimal algorithm is used mainly for comparison

studies. For instance, it may be useful to know that,

although a new algorithm is not optimal, it is within 12.3

percent of optimal at worst and within 4.7 percent on

average.

LRU (Least Recently Used) Algorithm

 If we use the recent past as an approximation of the near

future, then we can replace the page that has not been used

for the longest period of time. This approach is the least

recently used (LRU) algorithm

 It is an approximation of the optimal algorithm

 LRU replacement associates with each page the time of

that page’s last use.

 When a page must be replaced, LRU chooses the page that

has not been used for the longest period of time.

 We can think of this strategy as the optimal page-

replacement algorithm looking backward in time, rather

than forward.
.

D e p t o f C S E , M B I T S Page 8

Problem:

Consider the following reference string

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

for a memory with three frames.

Solution:

 The LRU algorithm produces twelve faults. Notice that the

first five faults are the same as those for optimal

replacement. It is much better than FIFO replacement with

fifteen.

 The LRU policy is often used as a page-replacement

algorithm and is considered to be good.

 The major problem is how to implement LRU replacement.

An LRU page-replacement algorithm may require

substantial hardware assistance.

 The problem is to determine an order for the frames

defined by the time of last use.

 Two implementations are feasible:

1. Counters

 In the simplest case, we associate with each page-table

entry a time-of-use field and add to the CPU a logical

clock or counter.

D e p t o f C S E , M B I T S Page 9

 The clock is incremented for every memory reference.

Whenever a reference to a page is made, the contents

of the clock register are copied to the time-of-use field

in the page-table entry for that page.

 We replace the page with the smallest time value.

 This scheme requires a search of the page table to find

the LRU page and a write to page table for each

memory access.

2. Stack

 Another approach to implementing LRU replacement

is to keep a stack of page numbers.

 Whenever a page is referenced, it is removed from the

stack and put on the top.

 In this way, the most recently used page is always at

the top of the stack and the least recently used page is

always at the bottom

 This approach is particularly appropriate for

implementations of LRU replacement.

 Like optimal replacement, LRU replacement does not

suffer from Belady’s anomaly.

 Both belong to a class of page-replacement algorithms,

called stack algorithms, that can never exhibit Belady’s

anomaly

D e p t o f C S E , M B I T S Page 10

Counting-Based Page Replacement Algorithms

1. LFU

2. MFU

 The least frequently used (LFU) page-replacement

algorithm requires that the page with the smallest count be

replaced.

 The reason for this selection is that an actively used page

should have a large reference count.

 With LFU, each page table entry has a counter, and for

each memory reference, the MMU increments that counter.

When a page fault occurs, the OS should choose the page

frame whose counter is smallest.

 A problem arises, however, when a page is used heavily

during the initial phase of a process but then is never used

again. Since it was used heavily, it has a large count and

remains in memory even though it is no longer needed.

 So solution is to right-shift the counter every occasionally,

so that the counter eventually decays back to 0 if it's not

used. This works much better.

 The most frequently used (MFU) page-replacement

algorithm is based on the argument that the page with the

smallest count was probably just brought in and has yet to

be used in future.

 The MFU algorithm comes from the same sort of

reasoning that brought up the worst-fit memory allocation

scheme

D e p t o f C S E , M B I T S Page 11

 In this case, removing the page frame whose frequency

counter is largest actually makes some sense: If a page's

frequency counter is large, then that page has had its fair

share of the memory, and it's time for somebody else to get

its turn.

 Neither MFU nor LFU replacement is common. The

implementation of these algorithms is expensive, and they

do not approximate OPT replacement well.

